Fast Computation of the Rank Profile Matrix and the Generalized Bruhat Decomposition

نویسندگان

  • Jean-Guillaume Dumas
  • Clément Pernet
  • Ziad Sultan
چکیده

The row (resp. column) rank profile of a matrix describes the stair-case shape of its row (resp. column) echelon form. We here propose a new matrix invariant, the rank profile matrix, summarizing all information on the row and column rank profiles of all the leading sub-matrices. We show that this normal form exists and is unique over any ring, provided that the notion of McCoy’s rank is used, in the presence of zero divisors. We then explore the conditions for a Gaussian elimination algorithm to compute all or part of this invariant, through the corresponding PLUQ decomposition. This enlarges the set of known Elimination variants that compute row or column rank profiles. As a consequence a new Crout base case variant significantly improves the practical efficiency of previously known implementations over a finite field. With matrices of very small rank, we also generalize the techniques of Storjohann and Yang to the computation of the rank profile matrix, achieving an (rω + mn) time complexity for an m × n matrix of rank r, where ω is the exponent of matrix multiplication. Finally, by give connections to the Bruhat decomposition, and several of its variants and generalizations. Thus, our algorithmic improvements for the PLUQ factorization, and their implementations, directly apply to these decompositions. In particular, we show how a PLUQ decomposition revealing the rank profile matrix also reveals both a row and a column echelon form of the input matrix or of any of its leading sub-matrices, by a simple post-processing made of row and column permutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Generalized Bruhat Decomposition

The deterministic recursive pivot-free algorithms for the computation of generalized Bruhat decomposition of the matrix in the field and for the computation of the inverse matrix are presented. This method has the same complexity as algorithm of matrix multiplication and it is suitable for the parallel computer systems.

متن کامل

Generalized Bruhat Decomposition in Commutative Domains

Deterministic recursive algorithms for the computation of generalized Bruhat decomposition of the matrix in commutative domain are presented. This method has the same complexity as the algorithm of matrix multiplication.

متن کامل

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Time and space efficient generators for quasiseparable matrices

The class of quasiseparable matrices is defined by the property that any submatrix entirely below or above the main diagonal has small rank, namely below a bound called the order of quasiseparability. These matrices arise naturally in solving PDE’s for particle interaction with the Fast Multi-pole Method (FMM), or computing generalized eigenvalues. From these application fields, structured repr...

متن کامل

Triangular Decomposition of Matrices in a Domain

Deterministic recursive algorithms for the computation of matrix triangular decompositions with permutations like LU and Bruhat decomposition are presented for the case of commutative domains. This decomposition can be considered as a generalization of LU and Bruhat decompositions, because they both may be easily obtained from this triangular decomposition. Algorithms have the same complexity a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2017